
Theorem:  Suppose 𝑁 is a positive integer that requires 𝑑 digits when expressed in base 10.  Then, the 

number of digits required to express 𝑁 in base 2 is at most ⌈
𝑑

log 2
⌉ where ⌈ ⌉ is the ceiling function. 

Proof:  We have that 10𝑑−1 ≤ 𝑁 < 10𝑑, and if 𝑏 is the number of binary digits when 𝑁 is written in 

base 2, then also 2𝑏−1 ≤ 𝑁 < 2𝑏.  Hence, 2𝑏−1 < 10𝑑  and then log 2𝑏−1 < log 10𝑑  so that 

(𝑏 − 1) log 2 < 𝑑 log 10.  Therefore, 𝑏 − 1 <
𝑑

log 2
 .  However, 𝑏 − 1 is an integer, so that 

𝑏 − 1 ≤ ⌊
𝑑

log 2
⌋.  Furthermore, log 2 is irrational, so that 

𝑑

log 2
 cannot be an integer.  This implies that 

⌊
𝑑

log 2
⌋ = ⌈

𝑑

log 2
⌉ − 1.  Thus, it follows that 𝑏 − 1 ≤ ⌈

𝑑

log 2
⌉ − 1 and finally that 𝑏 ≤ ⌈

𝑑

log 2
⌉. 

 

The proof above relies heavily on the fact that log 2 is irrational.  This can be proved in the following 

lemma: 

 

Lemma:  log 2 is irrational. 

Proof:  For sake of contradiction, suppose that log 2 is rational.  Then, log 2 =
𝑚

𝑛
 where 𝑚 and 𝑛 are 

positive integers.  This means 10
𝑚

𝑛 = 2 or that 10𝑚 = 2𝑛 so that 2𝑚5𝑚 = 2𝑛.  The left side of this 

equation is divisible by 5 but the right side is not, which is impossible.  This is the contradiction we 

needed, thereby proving that log 2 is irrational. 

 

Here are a couple of examples of the above theorem. 

Examples:  Suppose we have the number 12345 and we wish to know how many digits we’ll need to 

express this number in binary.  The theorem tells us that we’ll need at most ⌈
5

log 2
⌉ = ⌈

5

0.3010⋯
⌉ =

⌈16.6096 ⋯ ⌉ = 17.  In fact, 1234510 = 110000001110012 so that 14 binary digits are required for this 

number.  For another example, 9876510 = 110000001110011012 so that 17 binary digits are required for 

this number. 

 

Theorem:  Suppose 𝑁 is a positive integer that requires 𝑏 digits when expressed in base 2.  Then, the 

number of digits required to express 𝑁 in base 10 is at most ⌈𝑏 ∙ log 2⌉ where ⌈ ⌉ is the ceiling function. 

Proof:  We have that 2𝑏−1 ≤ 𝑁 < 2𝑏, and if 𝑑 is the number of denary digits when 𝑁 is written in 

base 10, then also 10𝑑−1 ≤ 𝑁 < 10𝑑.  Hence, 10𝑑−1 < 2𝑏  and then log 10𝑑−1 < log 2𝑏  so that 

(𝑑 − 1) ∙ log 10 < 𝑏 ∙ log 2.   Therefore, 𝑑 − 1 < 𝑏 ∙ log 2.  However, 𝑑 − 1 is an integer, so that 

𝑑 − 1 ≤ ⌊𝑏 ∙ log 2⌋.  Furthermore, log 2 is irrational, so that 𝑏 ∙ log 2 cannot be an integer.  This implies 

that ⌊𝑏 ∙ log 2⌋ = ⌈𝑏 ∙ log 2⌉ − 1.  Thus, it follows that 𝑑 − 1 ≤ ⌈𝑏 ∙ log 2⌉ and finally that 𝑑 ≤ ⌈𝑏 ∙ log 2⌉. 

 



Examples:  Suppose we have the binary number 1100011 and we wish to know how many digits we’ll 

need to express this number in denary.  The theorem tells us that we’ll need at most ⌈7 ∙ log 2⌉ =

⌈7 ∙ 0.3010 ⋯ ⌉ = ⌈2.1072 ⋯ ⌉ = 3 denary digits.  In fact, 11000112 = 9910 so that 2 denary digits are 

required for this number.  For another example, 11001002 = 10010 so that 3 denary digits are required 

for this number. 

 


